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Abstract. The density, pressure and temperature state surface is studied for
a ‘bonded’ fluid on a plane triangular lattice. Bonds are formed between
nearest-neighbour molecules on a honeycomb sublattice comprising § of the
total number of sites, while molecules on the remaining sites, which are re-
garded as interstitial, do not participate in bonding. There is competition
between a low-energy ‘open structure’ with all interstitial sites empty and each
molecule participating in three bonds, and a ‘close-packed structure’ with all
sites occupied. Calculations were made using a first-order statistical approxi-
mation based on a triangular group of sites. Separation between liquid and
vapour phases occurs below a critical pressure p.. Another significant value of
the pressure in this model is termed p, which is greater than p, and such that
curves of density against temperature at constant pressure between p, and p.
-display maxima. For a suitable ratio of the non-bonding energy of a nearest-
neighbour pair to the energy of bond formation there are density maxima in
the liquid as well as the supercritical state, as in fluid water. If the interaction
energy of an unbonded nearest-neighbour pair of molecules is zero the pro-
perties of the model can be related to those of an Ising ferromagnet on a honey-
comb sublattice and accurate values deduced for the critical density, pressure
and temperature.

1. Introduction

The accepted explanation for the anomalous behaviour of water density at normal
pressures is that the usual decrease in density due to the increase in amplitude of
thermal vibrations with temperature is counteracted by closer packing due to break-
down of tetrahedral coordination (see, for instance, Eisenberg and Kauzmann 1969).
However, the construction and treatment of an adequate model for water, in which this
behaviour together with other properties could be deduced from first principles by
the methods of statistical mechanics, presents a formidable task. The aim of the pre-
sent series of papers is to examine simple models of fluids with bonding properties
which imply that open configurations are in competition with closer-packed con-
figurations of higher energy. The models are tractable enough for the behaviour of
the density as a function of temperature and pressure to be deduced to a reasonable
approximation from their basic postulates.

The preceding paper (Bell 1969) treated one-dimensional models in which the
breaking of a bond allowed neighbouring molecules to approach more closely. The
present paper deals with a two-dimensional bonded lattice fluid on a plane triangular
(hexagonal) lattice. One third of the sites are ‘interstitial’ and molecules on these sites
cannot participate in the framework of bonds. The extension to two dimensions
permits the abandonment of the one-dimensional postulate that a molecule’s bonded
neighbours must remain further away from it than its unbonded neighbours. The
existence of the open structure is now dependent on rules restricting the angles
between the directions from a molecule to its bonded neighbours. Furthermore, the
two-dimensional lattice fluid displays a separation into ‘liquid’ and ‘vapour’ phases
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428 G. M. Bell and D. A. Lavis

so that it is possible to study the interaction between phase separation and anomalous
density behaviour. A (two-dimensional) pressure p, is found above which the density
decreases monotonically with temperature but below which anomalous behaviour
occurs. As with real water, p, is considerably greater than the critical pressure p,, for
liquid-vapour phase separation. Thus, above p, there is a range of pressures in
which the density passes through a maximum as the temperature increases. For a
suitable value of ratio of the non-bonding nearest-neighbour energy to the energy of
formation of a bond, the density maximum is also found in the liquid phase below p..

The present treatment is confined to lattice fluids although in one dimension
it was shown that the anomalous behaviour of a continuous fluid with a parabolic
potential well was similar to that of a lattice model. In one dimension an exact treat-
ment was possible but in the present paper we make use of a first-order statistical
approximation based on triangular groups of sites on the lattice. Exact values for the
critical pressure, density and temperature are given in one case.

We conclude this section with some remarks on the relation of this work to ex-
isting theories of fluid water. Those developed up to 1967 have been classified by
Eisenberg and Kauzmann (1969) into mixture models where the water molecules are
distinguished by their state of association, interstitial models where molecules are
displaced from a hydrogen-bonded framework, and models where the hydrogen
bonds may be bent or distorted. From this point of view the model of the present
paper is a very simple interstitial one. Levine and Perram (1968) have recently used
methods from the theory of cooperative phenomena to examine the states of association
of molecules on a lattice and have criticized the statistical basis of earlier theories.
They give a brief sketch of a lattice liquid theory with some vacant lattice sites but
do not introduce the restrictions on bonding direction which give rise to the ‘open
structure’ of our present model and lead to its most interesting properties.

2. The interstitial bonded fluid model and states at absolute zero

We assume that each molecule in the two-dimensional assembly on the triangular
lattice can participate in at most three bonds, which are at angles of 120° to each other.
The energy of formation of each bond is —w(w > 0) so that, while an unbonded
nearest-neighbour pair of molecules has an energy —e(e > 0), a bonded pair has an
energy of —(e+w). The triangular lattice is divided into a honeycomb sublattice
(sublattice a) and interstitial sites (sublattice b) as shown in figure 1 where aa and ab

Figure 1. The honeycomb (a) and interstitial (b) sublattices.
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nearest-neighbour site links are respectively represented by full and by broken seg-
ments. It can be seen that each a-site has three a- and three b-sites as nearest neigh-
bours, while each b-site has six nearest-neighbour a-sites. It is supposed that the
molecules on the a-sites are oriented in such a way that any aa nearest-neighbour
pair of molecules is bonded but no ab pair is bonded. With the pair energies stated
above, the configurational energy E, of the assembly is then given by

E, = —Npme— Npm®@w 2.1)

where N, is the total number of nearest-neighbour pairs on the triangular lattice
and Ny ,,® is the number on the honeycomb sublattice a. With these postulates no
molecule can be bonded except on an a-site and then only to molecules on the neigh-
bouring a-sites so that the maximum number of bonds from any one molecule is
three at angles of 120° to each other. The rule stated at the beginning of the section
is thus satisfied.

Sites of both sublattices can be either vacant or occupied by molecules. With
the postulates made above, the configuration in which each molecule participates in
the maximum number of bonds is one with all a-sites occupied and all b-sites vacant.
Thus M molecules will occupy the M sites of a honeycomb sublattice of a triangular
lattice of M sites with the remaining $M sites vacant. This will be termed the open
structure and the pattern of bonds is that made by the solid segments in figure 1.

The open structure can break down locally owing to movement of molecules from
a-sites to b-(interstitial) sites but our postulates exclude the possibility of cooperative
reorientation of molecules to form bonds between ab site pairs. (A model in which this
is not excluded will be considered in the next paper of this series). The total number
of triangular lattice sites will be denoted by N so that there are NV a-sites and 1N
b-sites. If there are M molecules of which M, and M, are on a- and b-sites respec-
tively then we can define an overall number density p and densities p, and p, on the
a- and b-sublattices respectively by

M M, M,

= —, = —, = —. 22
P= Pa= 3y Py (2.2)
In the perfect open structure p = %, p, = 1 and p, = 0. In general the three den-
sities are connected by the relation

o M _M.+M, .\ 23
PN T TN T et :

As is usual for a lattice fluid it will be assumed that the Hamiltonian is separable
into terms corresponding to the internal degrees of freedom of the molecules and a
configurational term depending on the arrangement of the M molecules on the N
sites and that these terms are independent. Each term in the assembly partition
function thus contains a factor {)(T)}* where (T is the partition function over the
internal degrees of freedom of one molecule. It would be possible, without increasing
the difficulty of the analysis, to assume that, for each bond formed by a given molecule,
(T) is modified by a factor which we could call exp{— 8(T')}, following Levine and
Perram (1968). Then a term exp{—2N,,,‘® §(T)} would appear in the assembly
partition function having the effect of replacing the constant w by the function of
temperature {w+28(7)}. Any equilibrium relation would remain valid provided this
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substitution was made. However, as we lack criteria to determine §(7) for the present
model and as we wish to keep the number of parameters as small as possible, we
shall put 8(T) = 0.

At low temperatures the alternative equilibrium state to the open structure dis-
cussed above is the ‘close-packed’ structure where all sites of the triangular lattice
are occupied so that £}/ molecules lie on a-sites and participate in bonding while
3 M lie on b-sites and are unbonded. If the configurational energies of the open and
close-packed structures are respectively denoted by E,, , and E, , then for an assembly
of M molecules

Ec.o = “%M(e_f"w)
E,o= —M(+w)—2Me = — M(3e+w). (2.4)

However, if the pressure is specified, the most stable state at absolute zero is that
of least configurational enthalpy (F,+pA) where 4 is the area occupied by the
assembly and p the two-dimensional pressure. We shall assume that the area per
lattice site is determined only the forces between two molecules and is independent
of temperature and pressure so that 4 = Na, where g, is constant. Then since in
the open and close-packed structures we have N = $M and N = M respectively,
we find that for an assembly of M molecules the corresponding configurational
enthalpies are

H,,= - '23"M(€ +w)+4§Mpa,
H, ,= —M3B3e+w)+ Mpa,. (2.5)
If we define an energy difference Aw and a pressure p, by
Aw = w— 3¢, bo = Aw/a, (2.6)
then the difference between the enthalpies of the two structures is given by
H,—H, = M(Aw—pa,) = $May(p.—p). (2.7)

It is clear that the condition for the open structure to be stable relative to the
close-packed structures at absolute zero is p < p,. If the energy of bond formation
is not large enough relative to the interaction energy of unbounded neighbours then
po < 0 and the close-packed structure is stable for all pressures at absolute zero.

3. The first-order triangle approximation

In the generalized first-order (quasi-chemical or Bethe) approximation a basic
group of sites is chosen and the system is regarded as an assembly of such groups
occupied in various ways (Guggenheim and McGlashan 1951). In the best-known
form of the approximation the group is simply a nearest-neighbour pair of sites but
we shall choose a triangle of two a-sites and one b-site, giving the correct ratio of
‘honeycomb’ to ‘interstitial’ sites. Where there are second-neighbour interaction
energies it is important that the ratio of first- to second-neighbour site pairs in the
group should be equal to that in the whole lattice (Bell 1953). In the present work
only first-neighbour interaction energies are considered but these are different for aa and
ab pairs so that it is desirable that the ratio of aa to ab site pairs in the group should
be equal to that in the lattice. This criterion is satisfied in the triangle group of sites
with one aa pair and two ab pairs. Using N triangles to give the correct total number
of 3N nearest-neighbour site pairs, the first-order approximation, in the Guggenheim
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and McGlashan (1951) formulation, consists of writing for the configuration number
Q the relation

InQ=ImnQ-NJ 6,In6, (3.1)
k

where each 0, is the probability of one of the types of occupation of the triangle
There are eight of the latter but two pairs obviously have equal probability so that six
distinct 8, are listed in table 1, The cotrelation between the triangles is to some extent

Table 1. The probabilities of the configurations on the triangular group
of sites

(The two lower sites are a-sites and the upper one a b-site. A bond is denoted
by a horizontal bar)

Probability Configurations

m m
0; or

0 or

m
7
m - m
h
A
m - m
m
fs -
h h
h
fs
h h

allowed for by the factor Q, which is such as to give Q its correct value when the dis-
tribution in each sublattice is random. Hence

n Q, = 2N[{ps In pu+(1—pa) In (1= p)} + 3o Inpu+ (1=py) In (1= )] (3.2)
The probabilities 8y, ..., 0« are not independent. Since the probabilities for all

types of occupation of the triangle must add up to unity,
20, +20,+0;+6,+0;+8; = 1. (3.3)

From table 1 we can write an expression for the overall number density p in terms of
the 6,,:

49, + 26, + 305+ 20, + 05 = 3p (3.4)

and, since we regard p as a thermodynamic variable, (3.4) constitutes a second rela-
tion between the 8,. We choose 64, 8,, 85 and 8, as independent order variables and
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then from (3.3) and (3.4) the dependent variables 65 and 64 are given by
95 = 3p—491—202—303—264 (3.5)
0 = 1—3p+20,+20;+0,. (3.6)
In deriving the equilibrium conditions the sublattice number densities p, and p,
appearing in In Q, will be regarded as dependent variables, From table 1 and equa-
tion (2.3) they are given by
pa = b1 +0;+05+6,, py = 3p—2p,. (3.7)

Again from table 1, the configurational energy E, given by equation (2.1) may be
expressed as

E, = — N{w(bs+8,)+e(20, + 305 +6,). (3.8)

We define a configurational Helmholtz free energy F, for the assembly and a
configurational free energy f, per lattice site by

F, = Nf(T, p, 04,05, 05, 0,) = E,—kT In Q. (3.9)

A procedure equivalent to finding the maximum term in the assembly partition func-
tion is to minimize F_ with respect to the independent order variables 8, 0, 85 and
0, at fixed values of the temperature 7', area 4 and number of molecules M. The
two latter thermodynamic variables are specified by N and p since the area a, per
lattice site is a constant. For brevity we introduce the notation

{M}z/s ~ {(pa(l —3p+ ZPa))}2/3 (3.10)

po(l=pa))  W(1—pa)(3p—2pa
and it is also convenient to define
-—€ —w 86
_ —, ¢ = —, = —, 3.11
7 eXP(kT) eXP(kT) iy (3.11)

The four equilibrium relations obtained by equating to zero the derivatives of f, with
respect to 0,, 05, 05 and 6, at constant T and p can then be expressed in the form

6, s By

— ——— = §

s ¢ b5

6 2 6 2

SO L, (3.12)
05 (¥°=¢%) s (y2¢)

We now require expressions for certain thermodynamic functions. The con-
figurational chemical potential g, is given, using the first relation of (2.3), by

éF, of
§o = (~~) = (i) (3.13)
oM T, A op/ r

and the two-dimensional pressure p by

oF )
pe _( ) _ _ao_l{ﬁ(ﬁVfc)}
04/ y.¢ eN Jyunr
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which yields

pay = (Zf) 5. (3.14)
From (3.13) and (3.14) ’

c;fc+Pao=Fc+PA (3.15)
p M

verifying that the present formulation satisfies the thermodynamic relation that chemi-
cal potential in a one-component system is equal to Gibbs free energy per molecule.
Since we equate to zero the derivatives of f, with respect to the four independent
order variables 6, 8,, 85 and 6, the latter can be held constant when the differentiation
in (3.13) is performed so that

go = —kT(Z In

+31n¢). (3.16)
~Po

After simplifying f, with the help of the equilibrium relations (3.12) we have,
from (3.14),

pa, =kT{EIn(1-p,)+%1In(1-p,)—Inf;—Iné}. (3.17)

With the aid of 3.3), the last definition of (3.11) and the equilibrium relations
(3.12) we obtain 0; as a function of ¢ and s, and then from (3.4) we can also express p
in terms of these variables. Since s is given in terms of p, and p by the definition (3.10)
we now have, at any temperature, the pressure p and the density p expressed im-
plicitly in terms of the two parameters p, and ¢. Another relation between these
parameters is necessary and it proves convenient to use (3.3), (3.4) and (3.7) together
with the equilibrium relations (3.12) to write

gpo—(1—pv) _ s(1-9){2y% +s(1+y)z" "}
1—p, YH( +)yd+s(1+y¢)}

This shows at once that fory = 1 (i.e.e = 0or T = o) ¢ = (1—p;)/pp. Otherwise,
3 < 1 and the right-hand side of (3.18) is a positive monotonically decreasing function
of ¢ so that (3.18) yields a unique positive value of ¢ at a given temperature and given
values of p and p,. Points on the (p, p, T) state surface may now be obtained numeri-
cally by adjusting p, until the equation for p is satisfied and then using equation (3.17)
for the pressure. Results are discussed in § 6 below.

(3.18)

4. Low-temperature behaviour

Important properties of the model can be derived from the equilibrium relations
at small T (i.e. when y, 2 and exp(—pa,/kT) are all much less than unity). If the
configuration tends towards the open structure then, from table 1, 6, -1 as 7'—0
and, if towards the close-packed structure, then #; — 1. We now consider the behaviour
of the interstitial sublattice number density p, which, from (3.4), (3.7), (3.11) and
(3.12) can be expressed as

01+0; O5+0, O5+0s

+ .
T+yvd 1432  1+4¢

We now suppose that the triangle configuration obtainable from the dominant one
without breaking a bond is the next most probable. Hence if 6, is nearly 1 the occupa-
tion probability next in order of magnitude is #; and vice-versa. This is physically

po = 20, +03+0; = 2

4.1)
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reasonable and may be verified by treating the opefl and close-packed structures
separately. It may then be deduced from (4.1) that, near " = 0,

po ~ (1+3°6)74 % ~ (1=py)/ps. (4.2)
Also, using two of the equilibrium relations (3.12),
0552(1 + %)
1 ~80;4+60, ~ — . 413
3t Vs ag? (4.3)

Substitution of (4.2) and (4.3) into the pressure relation (3.17) yields

exp {3(pao+3e—w)} — exp {3(p—po)ao} - 5 (4.4)

KT kT 1—pp)®

It follows that, for p > p,, p, — 1 as T — 0 (close-packed structure) while, for p < p,
pp =0 as T —0 (open structure) in accordance with the conclusions of § 2 above.
If p = p,, exactly, then from (4.4) the limiting value of p, at absolute zero is given
by the cubic

(1=pp)’—pp® =0

which has only one real root, p, = 0:43. Since p, = 1 in both the open and close-
packed structures it follows from (2.3) that the overall number density p —0-81 as
T — 0 when p = p,.

We now consider the open structure separately. When p < p, it follows from
(4.1), (4.2) and (4.4) that y°¢ — o0 as T — 0 and we may write the asymptotic relation

3

3 ~ pp ~ €xp (%f;—o) 2812y=9812 = exp{

=) “s)

kT
The limiting behaviour of (1—p,) (or s) can be obtained from the relation
1—py = 0+ 0,+ 05+ 0. (4.6)

Tt is found that 8, is next in order of magnitude after 6, and ;3 and that

—~3
By ~ 1—p, ~ exp(_gﬁ?) RENE] (4.7)
Equation (2.3) can be written in the form

p=%+3pp—3(1-pa) (4.8)

and, from (4.5) and (4.7), py, is of higher order of magnitude than (1—p,). Hence p
increases with temperature near 7" = 0 and thus, if p, < p < p, (p,, being the critical
pressure), there must be at least one maximum in the curve of density against tempera-
ture at this value of p. If p < p, the question of whether such a maximum occurs
before separation into conjugate phases must be resolved by calculation.

For p > p,, the configuration tends to the close-packed structure, y?¢ —0 with T
and we have the asymptotic relation

— P4, o~ P)Ao
By~ 1—pp~ exp( kPT ) 2748 = exp{(ﬁ—kTﬁ—}. (4.9)
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For (p—po)a, > €it is found that 8, is next in order of magnitude after §; and 6, and
that

6, ~ 1—p, ~ exp(—_{)—;—o) 22y, (4.10)

For positive (p—p,)a, < €, on the other hand, it is found that 6, is next in order of
magnitude after 03 and 0, and that

-2 o
By ~ 1—py ~ exp(—— pa ) 2, (4.11)

kT
These relations mean that, while for p < p, and (p—p,)a, > e defects in the a- and

b-sublattices are uncorrelated at low 7, in the case 0 < (p—p.)a, < € a defect
(vacancy) on sublattice a is likely to occur next to a defect (vacancy) on sublattice b.

5. Model with zero interaction energy between unbonded neighbours

If € = O the states of the interstitial bonded fluid can be related to those of the
Ising ferromagnet on the honeycomb lattice. Although it will be seen in § 6
that a non-zero value of € gives results which are physically of more significance, it is
of interest to compare critical values derived from the triangle approximation for
€ = 0 with accurate values obtained by comparison with the Ising model.

With € = 0 there is no energy of interaction between interstitial and honeycomb
molecules so that the distribution on sublattice a is random and uncorrelated with
that on sublattice b. Hence we may write for the configurational Helmholtz free

energy per site .
feo = $kT{py Inpy+ (1 —pp) In(1—pp)} +3/c*pa) (5.1)

where f,® is the free energy per site for the assembly on sublattice a, regarded as a
function of the number density p,. We show in the Appendix that

Je(pa) = 2w —fwpa+f*(pa) (5.2)

where f.*(p,) is the free energy per lattice site for a zero-field Ising ferromagnet on
the honeycomb lattice with a fraction p, of the spins pointing in one direction and the
Ising interaction constant J equal to {w. Substituting (5.2) into (5.1) we have

Jo =$kT{pp Inpy+(1—py) In(1—py)t+iw—wps + §/5pa)- (5.3)

Applying equation (2.3) it follows from (5.3) that the equilibrium relation for
transfer of molecules between the sublattices is

8 C 28 C* a
(i) _ —%len( P )_w+:‘—f;-(”—)= 0. (5.4)
opa/ » 1—py OPa

Applying equation (3.13) to the form of f, given by (5.3), where the only dependence
on the overall density p is through p, in the first term on the right-hand side, we find
that the chemical potential is

ofe
eo= e prim e (5.5)
dp 1—-py
Substituting (5.3), (5.5) and (5.4) into equation (3.14) for the pressure we derive
afe af*
pa,=p-— —f.= —3kTIn(1 ——pb)—%‘w-F%(pa—— —fc*). (5.6)
op pa

A8
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The zero-field Ising model satisfies an equilibrium condition for reversal of dipole
direction which can be written

of *
Gpa,

= 0. (5.7)

Comparing this relation with (5.4) and noting that p, is given in terms of p, by
(2.3) we see that (5.4) corresponds to an equilibrium condition for an Ising model in
an applied field depending on p,. Although exact closed-form solutions exist for
the honeycomb lattice zero-field Ising model they are not available when the applied
field differs from zero and we must still resort to approximation methods. However,
we shall now show that critical properties in the interstitial bonded fluid model can
be related to the zero-field Ising model. The Ising free energy f * satisfies the sym-
metry relation

f*(pa) = fo*(1=pa)- (5.8)

Hence, below the Curie temperature T, the Ising model equilibrium condition (5.7)
is satisfied at p, = } and a pair of points p, = (1 |m|), m being the relative magnet-
ization. Where (5.7) is satisfied the bonded fluid equilibrium relation (5.4) is also

satisfied if
= {1 Rl 5.9
Pe {+6Xp(kT)} ©9)

irrespective of the value of p, given by (5.7). Hence from (5.6) pa, has the same value
for the bonded fluid phases where p, = 4(1+ |m|) and p, is given by (5.9). Again
from (5.5) and (3.9) the chemical potential g, has the same value — 3w in the two
phases, which are thus in equilibrium. The two conjugate bonded fluid phases
become identical when m = 0 (p, = 1) so the Curie temperature T, of the honey-
comb lattice Ising model is also the critical temperature for the bonded fluid on the
triangular lattice with e = 0. From (2.3) and (5.9) the critical density p, is given by

2

1 LAY
pc=§{1+exp(kT)} +1 (5.10)

while from (5.6), (5.7) and (5.9) the critical pressure p, is given by

3
FwW

kT

bl = $kT, ln{l +eXP( )}_%w_%fc* (Pa =%, T= Tc) (511)

o]

Accurate values for kT Jw = kT [4J and p.a,/w were derived from honeycomb
Ising model critical values given by Domb (1960—appendix II, § 3) identifying the
critical value of f.* with Domb’s —kT . In A,. The accurate critical values are com-
pared with those derived from the zeroth and first-order approximations in table 2.

Table 2. Accurate and approximate critical values for € = 0

Zeroth First Accurate
order order
RT./w 0:750 0-455 0-380
Pe 0.373 0-345 0-340

Dotofww 0-1282 0.0313 0-0119
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It should be noted that the value of pressure p, (separating the regions of open and
closed-packed structure at T = 0) derived in §2 is also accurate so that the last entry
in the last column of table 2 gives the accurate value of p /p, for the case e = 0.
The properties of the bonded fluid differ from those of the ‘lattice gas’ on the honey-
comb lattice alone. For instance, the conjugate phase densities of the latter are
1(1 4 |m|) and the critical density is } as opposed to the bonded fluid value given by
(5.10). Even for the case ¢ = 0 considered here, the bonded fluid density displays
anomalous properties not shown by standard lattice gases, as can be seen both from
the considerations of § 2 and § 4 above and from the first-order results in figures 2
and 5 below.

6. Numerical results and discussion

Calculations have been performed using the first-order triangle approximation
discussed in § 3. With the bonding energy w absorbed into a reduced temperature
kT|w the only arbitrary parameter is the ratio ¢/w which must lie in the range 0 to }
for the open structure to exist at low temperatures and pressures. For calculation we
have chosen the two values 0 and } for ¢/w. Isobars (curves of 7' against p at constant
p) are plotted on figure 2 for e/w = 0 and on figure 3 for ¢/w = 1. For subcritical
pressures (p < p.)the thermodynamically unstable portions of the curves are shown as
broken while the straight ‘tie-lines’ connect conjugate liquid (high density) and vapour
(low density) phases. For a given subcritical pressure the temperature at which

\ \

'
|
[
]

aft

|
1
|
|
Iy

06

0-455}-
04

02

0 07 0345 04
p

Figure 2. Temperature-density curves at constant pressure for e/w = 0,
first-order triangle approximation. Each curve is labelled with the value of
pao/w. (psao/w = 1 where e/w = 0),
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liquid and vapour phases are in equilibrium can be obtained by plotting the chemical
potential g, against temperature and a curve of this type is shown in figure 4. The
closed loop corresponds to thermodynamically unstable states while the double point
gives the temperature of phase equilibrium at the given pressure. The phenomenon

/3

kTlw

L 1 i
02 04 06 08 |
p

Figure 3. Temperature-density curves at constant pressure for e¢/w = },
first-order triangle approximation. Each curve is labelled with the value of
paojw. (poao./w = } where e/ = }).

of density increase with temperature at constant pressure and the appearance of a
density maximum is easily seen on each isobar in the range p, < p < p, on both
figure 2 (e/w = 0) and figure 3 (¢/w = }). However, at subcritical pressures p < p,
a density maximum appears (in the liquid state) only for ¢/w = %. Isobars were also
calculated for the zeroth-order approximation and are qualitatively similar to those
shown in figures 2 and 3.

The fluid state surface is more often represented by isotherms than by isobars.
For the present model, in the case e¢/w = 0, isotherms (curves of pressure against
density at constant temperature) are plotted in figure 5. The form of the curves in
the phase-separation region, with thermodynamically unstable parts represented by
broken curves, is familiar for approximate theories of fluids. The characteristic
properties of the state surface of the present model are shown by the appearance of
density maxima on the isobars. This implies that pairs of points exist corresponding
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to the same density and pressure but different temperatures so that isotherms in the
lower temperature range intersect. This behaviour is displayed by the isotherms in
the right-hand part of figure 5.

In water there are density maxima on isobars in the liquid phase below the critical
point as well as in the supercritical region. In our model this occurs for e/ = } but
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Figure 4. Chemical potential ( —3g./w)-temperature curve for efw =0,
paojw = 1/300, first-order triangle approximation.
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Figure 5. Pressure—density curves at constant temperature for e/w = 0, first-

order triangle approximation. Each curve is labelled with the value of £7/w. Note

that the scale of the diagram is changed for p >0-65 to display intersecting
isotherms.
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not for e/w = 0, which is physically reasonable since in water the non-bonding inter-
actions comprehended in our parameter e are of considerable importance. Anomalous
density behaviour in water ceases at a pressure between 1500 and 2000 atmospheres
(Bridgman 1949, Eisenberg and Kauzmann 1969) while the critical pressure is 218-3
atmospheres so that the ratio p,/p, is between 7 and 9. For the present model with
e/w = 0 the accurate value of p./p, is 84 while with the first-order (triangle) approxi-
mation p,/p. is 32. On the other hand with €/w = } it can be seen from figure 3 that
the first-order (triangle) approximation gives a value of p,/p, between 4% and 22
while the accurate value would presumably be rather higher. It thus again appears
that the model’s behaviour is closer to that of water with e/w = } than with e/w = 0.
However, it should be remarked that the anomalous behaviour of water is, as would
indeed be expected, more complicated than that of the model, since at 1500 atmos-
pheres there is a density minimum as well as a maximum in the isobar.

From a theoretical point of view the chief defect in the present model is that,
as well as the long-range order implicitly imposed by using a triangular lattice of sites
for the molecules, there is an additional degree of ‘sublattice’ long-range order result-
ing from the assumed differences between molecular pair interactions when both the
members are on honeycomb lattice sites and when one member is on an interstitial
site. This defect will be removed in the next paper of the series where there is no
distinction between the sites of the triangular lattice and the open structure appears
as a form of short-range order. However, the present paper has demonstrated that a
very simple interstitial model with restricted directional bonding properties can
show density and critical behaviour qualitatively similar to that of fluid water.
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Appendix

We relate the properties of the interstitial bonded fluid model for the case e = 0,
when the distributions on sublattices a and b are uncorrelated, with those of the Ising
model on the honeycomb lattice. If 3, denotes the number of molecules on the
2N sites of sublattice a and N, ™, Np,®, Ny, respectively denote the numbers
of molecule-molecule, molecule-hole and hole-hole nearest-neighbour pairs on
sublattice a then (disregarding boundary effects)

IN P+ Npn® = 3M, = 3(3N)p, = 2Np, (A1)

2N @+ Ny ® = 3(3N = M,) = 2N(1 —p,). (A2)

If Q® denotes the number of configurations on sublattice a for given values of M,

an.d Nom® then, using (A1) and (A2), the free energy of the assembly on sublattice
i INF® = —kT In Q® — N @

= INw—~Nwp, — kT In Q® + 1N @ —30(Npym™® -+ Npn'®).  (A3)

Now the configurational free energy of an Ising ferromagnet on a honeycomb
lattice of N sites, identical with sublattice a, is

INfH = —RT In Q® + IN 1 = J(Npum® + Npn'®) (A4)
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where the labels ‘m’ and ‘h’ now denote the ‘up’ and ‘down’ positions of an Ising
dipole and J is the Ising interaction constant (see, for instance, Domb 1960). Com-
paring (A3) and (A4) and identifying J and }w, equation (5.2) follows.

References

BeLL, G. M., 1953, Phil. Mag., 4, 65.

1969, J. math. Phys., 10, 1753.

BripeMmaN, P. W., 1949, The Physics of High Pressure (I.ondon: Bell and Sons).

Dows, C., 1960, Adv. Phys., 9, 149.

EmsexBerG, D., and Kavzmann, W., 1969, The Structure and Properties of Water (Oxford:
Clarendon).

GuccenHEIM, E. A, and McGrasuan, M. C., 1951, Proc. R. Soc., 206, 335,

LEvINE, S., and PErRraAM, T, W., 1968, Hydrogen-Bonded Solvent Systems, Eds A. K, Covington
and B. P. Jones (London: Taylor and Francis).




